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Abstract

Several researchers have illustrated that constraints can im-
prove the results of a variety of clustering algorithms. How-
ever, there can be a large variation in this improvement,
even for a fixed number of constraints for a given data set.
We present the first attempt to provide insight into this phe-
nomenon by characterizing two constraint set properties: in-
consistency and incoherence. We show that these measures
are strongly anti-correlated with clustering algorithm perfor-
mance. Since they can be computed prior to clustering, these
measures can aid in deciding which constraints to use in prac-
tice.

Introduction and Motivation
The last five years have seen extensive work on incor-
porating instance-level constraints into clustering meth-
ods (Wagstaffet al. 2001; Klein, Kamvar, & Manning 2002;
Xing et al. 2003; Bilenko, Basu, & Mooney 2004; Bar-Hillel
et al. 2005). Instance-level constraints specify that two
items must be placed into the same cluster (must-link, ML)
or different clusters (cannot-link, CL). This semi-supervised
approach has led to improved performance on several real-
world applications, such as noun phrase coreference resolu-
tion and GPS-based map refinement (Wagstaffet al. 2001),
person identification from surveillance camera clips (Bar-
Hillel et al. 2005) and landscape detection from hyperspec-
tral data (Lu & Leen 2005).

However, the common practice of presenting results using
learning curves, which average performance over multiple
constraint sets of the same size, obscures important details.
For example, we took four UCI data sets (Blake & Merz
1998) and generated 100 randomly selected constraint sets,
each containing 50 constraints. We then clustered them with
COP-KMeans (Wagstaffet al. 2001), using the same initial-
ization for each clustering run. We observed that, even when
the number of constraints is fixed, the accuracy of the output
partition measured using the Rand Index (Rand 1971) varies
greatly, by 4 to 11% (Table 1). Since the starting point for
each run was held fixed, the only source of variation is the
constraint set. We have identified two constraint set prop-
erties that help explain these variations:inconsistency and
incoherence.
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Accuracy
Data set Min Mean Max
Glass 67.6 69.9 72.3
Iris 82.2 88.4 93.4
Ionosphere 58.2 60.1 62.3
Wine 68.0 71.3 74.3

Table 1: Variation in accuracy (Rand Index) obtained by
COP-KMeans using 50 randomly generated constraints and
a fixed starting point, over 100 trials.

Quantifying Inconsistency/Incoherence
Inconsistency is the amount of conflict between the con-
straints and the underlying objective function and search
bias of an algorithm. Our measure of inconsistency quan-
tifies the degree to which the algorithm cannot “figure out”
the constraints on its own. Given an algorithmA, we gen-
erate partitionPA by runningA on the data set without any
constraints. We then calculate the fraction of constraintsin
constraint setC that are unsatisfied byPA, and average this
measure over multiple unconstrained clustering runs.

Incoherence is the amount of internal conflict between the
constraints in setC, given a distance metricD. It is not
algorithm dependent. Constraints can be incoherent with
respect todistance incoherence and/ordirectional incoher-
ence. Intuitively, the points involved in an ML constraint
should be close together, while points involved in a CL
constraint should be far apart, as viewed by the ideal dis-
tance metric. In fact, this line of reasoning is what moti-
vates some of the metric-learning constrained clustering al-
gorithms (Klein, Kamvar, & Manning 2002; Bilenko, Basu,
& Mooney 2004). We define distance incoherence as the
fraction of constraint pairs (each pair consisting of a ML
and a CL constraint) for which the separation of the points
in the ML constraint is more than that of the CL constraint.

Distance aside, the directional position of a constraint in
the feature space is also important. An ML (or CL) con-
straint can be viewed as imposing an attractive (or repulsive)
force in the feature space within its vicinity. An ML/CL con-
straint pair is directionally incoherent if they exert contra-
dictory forces in the same vicinity. To determine if two con-
straints,c1 andc2, are incoherent, we treat the constraints as
line segments and compute theirprojected overlap, or how
much the projection ofc1 along the direction ofc2 overlaps
with (interferes with)c2. We define directional incoherence
as the fraction of constraint pairs that have a non-zero pro-
jected overlap.
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(a) Inconsistency (r = −0.80)
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(b) Distance Incoherence (r = −0.82)
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Figure 1: Mean accuracy of algorithms, as a function of problem inconsistency and incoherence, over four UCI data sets. The
line is a linear fit to the data that shows strong negative correlations (r values, 99% confidence).

Experimental Results
In these experiments, we examined what happens when in-
consistent or incoherent constraint sets are provided to dif-
ferent constrained clustering methods. Because our diffi-
culty measures can be computeda priori, they can aid in
deciding which constraints to use.

The two most common approaches to constrained cluster-
ing involve either satisfying the constraints directly or learn-
ing a distance metric that accommodates the constraints.
We compared a representative of each approach and a hy-
brid method that performs both functions: (1) COP-KMeans
(CKM): hard constraint satisfaction in KMeans (Wagstaff
et al. 2001); (2) PC-KMeans (PKM): soft constraint satis-
faction (Bilenko, Basu, & Mooney 2004); (3) M-KMeans
(MKM): metric learning from constraints (Bilenko, Basu,
& Mooney 2004); and (4) MPC-KMeans (MPKM): hybrid
approach, performing both soft constraint satisfaction and
metric learning (Bilenko, Basu, & Mooney 2004).

For each data set in Table 1, we generated a constraint set,
C, by randomly selecting item pairs and examining their true
labels. We computed the inconsistency and incoherence of
C, then clustered the data set using each algorithm 10 times
from different random initializations and reported the aver-
age Rand Index obtained. We repeated this process 10 times
for each number of constraints,|C| = {10, 20, . . . , 200}.

Figure 1 collects results for all four data sets, permitting
us to make general conclusions for a variety of inconsistency
and incoherence values. We observe a strong negative corre-
lation between all three measures and accuracy. That is, con-
straint sets that are more consistent with the algorithm’s bias,
or more internally coherent, tend to yield the largest gainsin
accuracy. This helps explain why constraint sets of the same
size can provide such different performance results, in con-
trast to traditional learning curves, which average the results
for a given constraint set size.

We also assessed each algorithm’s individual sensitivity to
each measure. We found that CKM and MKM are the most
sensitive to inconsistency (r = −0.95,−0.98), while PKM
and MPKM are more robust (r = −0.60,−0.73). This anal-
ysis provides insights into the expected future performance
on a problem with specific inconsistency and incoherence.
Learning curves only characterize behavior on an isolated
problem.

Conclusions and Future Work
Identifying meaningful constraint set properties is of bene-
fit to practitioners and researchers. For scenarios in which
the user can generate multiple constraint sets, these results
strongly recommend selecting the one with the lowest in-
consistency and incoherence. When multiple algorithms are
available, choosing the algorithm that has the lowest incon-
sistency should help produce the best quality clustering with
minimal computational effort. Our measures can also be
used to prune noisy constraints or to actively choose con-
straints. We intend to explore these options in the future.
We also plan to generalize our definition of incoherence to
non-metric distance measures. Further, these measures can
provide insight into the black-box computation of different
metric-learning algorithms. Since metric-learning methods
modify the distance metric, they effectively reduce incoher-
ence as they iterate, and we can now quantify how much
improvement is achieved at each iteration.
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